
МЕЖДУНАРОДНЫЙ НАУЧНЫЙ ЖУРНАЛ

09[©] 2025 #

ИЗОБРЕТЕНИЯ ЧЕЛОВЕЧЕСТВА: ГАЗОВЫЙ БАЛЛОН

Научные высказывания

Сетевой научный журнал открытого доступа 2025 ● № 13(81)

Издается с сентября 2021 г.

Выходит два раза в месяц.

ISSN:2782-3121

Научные статьи, поступающие в редакцию, перед опубликованием рецензируются редакционным советом. Материалы публикуются в авторской редакции.

Авторы несут ответственность за содержание статей, за достоверность приведенных в статье фактов, цитат, статистических и иных данных, имен, названий и прочих сведений, а также за соблюдение законов об интеллектуальной собственности. Мнение редакции может не совпадать с мнением авторов материалов. При использовании и заимствовании материалов ссылка на издание обязательна.

[©] Авторы статей, 2025

[©] Редакция журнала «Научные высказывания, 2025

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

Главный редактор: Румянцева Екатерина Александровна, к.п.н., ведущий специалист Общероссийской общественной организации «Национальная система развития научной, творческой и инновационной деятельности молодежи России «Интеграция».

Абрамова Наталья Евгеньевна, кандидат юридических наук, доцент кафедры налогового права Финансового университета при Правительстве РФ

Абрашкин Михаил Сергеевич, кандидат экономических наук, доцент кафедры Управления ГБОУ ВО МО «Технологический университет»

Айгумова Заграт Идрисовна, кандидат психологических наук, профессор кафедры психологии образования факультета педагогики и психологии Московского педагогического государственного университета

Антипов Алексей Олегович, кандидат технических наук, доцент, заместитель декана по учебно-методической и научной работе Технологического факультета Государственного социально-гуманитарного университета

Безбородов Николай Максимович, кандидат исторических наук, Генерал-майор авиации, депутат Государственной Думы Первого (1993–1995 гг.), Второго (1996–1999 гг.), Третьего (2000–2003 гг.) и Четвертого (2004–2007 г.) созывов

Блюмин Аркадий Михайлович, доктор технических наук, профессор кафедры прикладной информатики Российского государственного аграрного университета — МСХА им. К.А. Тимирязева

Борисова Мария Михайловна, научный сотрудник лаборатории нейротехнологий Научного Центра Биомедицинских Технологий Федерального медико-биологического агентства России (ФМБА России)

Васюков Петр Павлович, кандидат исторических наук, доцент кафедры международной коммерции Российской Академии народного хозяйства и государственной службы при Президенте Российской Федерации, Почетный работник высшего профессионального образования Российской Федерации

Вогулкин Сергей Евгеньевич, доктор медицинских наук, профессор, Почетный работник высшей школы Российской Федерации, профессор Уральского гуманитарного института, настоятель Храма во имя Архистратига Михаила, протоиерей

Ерофеева Мария Александровна, доктор педагогических наук, доцент, профессор Московского университета МВД России имени В.Я. Кикотя, член-корреспондент Международной академии наук педагогического образования, член-корреспондент Российской академии естествознания

Иванихин Павел Маркович, кандидат военных наук, доцент Общевойсковой академии Вооруженных Сил Российской Федерации, представитель Российского военно-исторического общества

Изергин Николай Данатович, доктор технических наук, профессор, преподаватель кафедры «Тактика специальной подготовки» Рязанского гвардейского высшего воздушно-десантного командного училища имени генерала армии В.Ф. Маргелова Министерства обороны Российской Федерации

Крупский Александр Юльевич, кандидат технических наук, Член-корреспондент Академии военных наук, профессор, ведущий научный сотрудник Института управления, информации и моделирования Академии военных наук, научный редактор журнала Министерства обороны Российской Федерации «Военная мысль»

Лисуренко Лариса Александровна, кандидат педагогических наук, доцент кафедры психологии Военного университета Министерства обороны Российской Федерации

Лобзов Константин Михайлович, доктор военных наук, доцент, профессор Московского пограничного института ФСБ России, Почетный работник высшего профессионального образования Российской Федерации, член-корр. Академии военных наук

Ляпин Александр Сергеевич, кандидат исторических наук, доцент, доцент кафедры психологии образования Государственного социально-гуманитарного университета

Николайкин Николай Иванович, доктор технических наук, профессор Московского государственного технического университета гражданской авиации, Почетный работник высшего профессионального образования Российской Федерации, академик МАНЭБ

Николайкина Наталья Евгеньевна, доктор технических наук, профессор, зав. кафедрой «ХимБиоТех» Московского политехнического университета, Почетный работник высшего профессионального образования Российской Федерации, академик МАНЭБ

Огурцов Сергей Викторович, кандидат биологических наук, доцент кафедры зоологии позвоночных биологического факультета Московского государственного университета им. М.В. Ломоносова

Орлова Александра Андреевна, кандидат юридических наук, доцент кафедры теории государства и права, международного и европейского права Академии права и управления ФСИН Минюста России, подполковник внутренней службы

Побережная Ирина Адольфовна, кандидат юридических наук, доцент кафедры государственно-правовых дисциплин Университета Прокуратуры Российской Федерации

Полищук Николай Иванович, доктор юридических наук, профессор, Начальник кафедры теории государства и права, международного и европейского права Академии права и управления ФСИН Минюста России

Седишев Игорь Павлович, кандидат химических наук, доцент кафедры органической химии Российского химико-технологического университета им. Д.И. Менделеева

Сергеев Владимир Иванович, доктор юридических наук, профессор Московского гуманитарно-экономического института, член Центральной коллегии адвокатов г. Москвы, Академик Российской Академии Адвокатуры, Почетный адвокат РФ, член Союза журналистов России

Сергеева Евгения Аркадьевна, редактор издательской группы «Юрист»

Смольяков Андрей Анатольевич, кандидат юридических наук, доцент кафедры государственного права Санкт-Петербургского государственного университета аэрокосмического приборостроения

Степанова Галина Павловна, кандидат медицинских наук, заведующая лабораторией функциональной диагностики Государственного научного центра «Институт медико-биологических проблем РАН»

Сыркин Леонид Давидович, доктор психологических наук, заведующий кафедрой психологии образования Государственного социально-гуманитарного университета

Хутин Анатолий Федорович, доктор исторических наук, профессор кафедры «Теория, история государства и права Московского государственного университета технологий и управления им. К.Г. Разумовского, академик, член Президиума Академии Союза и Искусств Исполкома Союзного государства Белоруссия и Россия, Государственный советник Первого класса

Цмай Василий Васильевич, доктор юридических наук, профессор, зав. кафедрой международного права Санкт-Петербургского государственного университета аэрокосмического приборостроения, Заслуженный юрист России

Чирков Дмитрий Константинович, кандидат юридических наук, доцент, профессор Высшей школы бизнеса, менеджмента и права Российского государственного университета туризма и сервиса

СОДЕРЖАНИЕ

ЗАГЛАВНАЯ СТАТЬЯ НОМЕРА	МЕДИЦИНА		
Газовый баллон: история появления	Степанова Галина Павловна		
и эволюция развития7	Дегтеренкова Наталья Васильевна		
ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ	Степанова Ксения Юрьевна Адаптация к ортостатическим нагрузкам после пребывания в условиях длительной		
Сомова Мария Валериевна	замкнутой изоляции		
Макаренко Кирилл Евгеньевич Безопасность и управление доступом	ПЕДАГОГИКА		
в эпоху интернета вещей: многоуровневые	Булатова Регина Равильевна		
подходы и инновационные решения10	Использование приемов сенсорной		
МАРКЕТИНГ, РЕКЛАМА И PR	интеграции в коррекционной работе учителя-дефектолога	24	
Мамаева Виктория Алексеевна			
Ситкин Дмитрий Владимирович	Казакова Ксения Алексеевна		
Влияние «быстрой моды»	Теоретические аспекты		
и перепроизводства на экономику	формирования имиджа		
и экологию развивающихся стран14	образовательной организации	27	

ЗАГЛАВНАЯ СТАТЬЯ НОМЕРА

Газовый баллон: история появления и эволюция развития

Относительно недавнее по историческим меркам изобретение газового баллона оказалось уникальным техническим и технологическим решением, которое было бы невозможно, без одновременного развития инженерии и материаловедения. Сейчас сжиженный газ — это всего лишь один из способов обеспечения пользователей дешевой, безопасной и экологически чистой энергией. По популярности сейчас он уступает только дизельному топливу и бензину, продолжая активно развиваться и сокращая дистанцию.

Современные газовые баллоны являются важнейшим и практически незаменимым во многих сферах деятельности элементом. На кухнях и дачах, в загородных домах и небольших мастерских, в автосервисах и промышленных объектах можно найти массу примеров эффективного применения газовых баллонов. А кто и когда, при каких условиях нашел такое, казалось бы, простое решение — сжать газ до определенного состояния и «упаковать» его в обыкновенные металлические емкости?

Сначала было открытие «нефтяного» газа

Изучать особенности, свойства и, так называемые «побочные эффекты» нефтепродуктов ученые и специалисты-химики стали достаточно давно. Но пальму первенства удалось завоевать известному французскому химику Клоду Луи Бертолелле, который в 1785 году открыл первый из насыщенных углеводородов — метан. Ученый проводил свои исследования на болотном газе и сумел вывести молекулярную формулу летучего продукта.

Изначально газы использовались в качестве взрывоопасных веществ, а также — для частичного освещения улиц, зданий, сооружений. Прошло около 100 лет, пока, в 1871 г не был придуман простой и эффективный способ хранения углекислого газа в металлических баллонах. Именно это изделие, придуманное французским физиком Эдуардом Деламаром (кстати, запатентованное в установленном порядке) стало прообразом будущих баллонов для сжиженного газа, достаточно быстро распространившихся по всему миру.

XIX столетие — отправная точка

Прежде, чем конструкторы и ученые придумали использовать баллоны, была реализована идея сжижать углеводородные газы, используя технологию компрессии. Впервые удалось реализовать уникальное решение немецкому инженеру Герману Блауру, произошло это в 1903 году. Кстати, сам Блаур ока-

зался одним из успешных учеников лауреата Нобелевской премии химика с мировым именем Адольфа фон Байера.

Основной целью, которую поставил перед собой Г. Блаур стало сгущение газовой смеси (пропана, бутана, изобутана, пропилена и пр.), образующейся в процессе нагревания нефти и нефтепродуктов в специальных печах. Была установлена уникальная способность этих газов к сжижению, которое про-исходило при относительно невысоком давлению. При этом сохранялась высокая калорийность сырья, достигающая 11 000 кал/м³. Сжиженный газ получил коммерческое наименование «блаугаз».

Не обошлось и без «курьезов»

Есть в истории открытия сжиженного нефтяного газа и смешное. Один из американских автолюбителей (фамилия автомобилиста не сохранилась) заметил, что приобретенный на заправке бензин достаточно быстро испаряется. Он заподозрил в недобросовестности продавца топлива, но, чтобы убедиться в правильности своих подозрений, водитель отнес «некачественное» топливо своему знакомому — химику Уолтеру Снеллингу для проведения профессиональной экспертизы.

И уже эксперт, выполняя заказ «сверхбдительного» покупателя, устанавливает, что в быстроиспаряющейся жидкости содержится целый «букет» углеводородных газов: пропан, бутан и пр. Предприимчивому химику потребовалось всего несколько лет, чтобы построить и ввести в эксплуатацию первую в мире установку, позволявшую разделять топливо на жидкие и газообразные составляющие. А в 1913 году был впервые испытан автомобиль, работающий на сжиженном газе.

Таким образом, были созданы все предпосылки для того, чтобы разработать модель газового баллона для хранения сжиженных нефтяных газов.

Первый газовый баллон — обыкновенная бутылка!?

Полученные знания, навыки и умения в вопросах получения, преобразования и хранения сжиженного газа успешно развил выдающийся доктор химии Уолтер Снеллинг. Ученый, работавший в то время в Питтсбурге разработал технологию стабилизации бензина за счет выделения бутан-пропановой фракции. Полученное вещество было «упаковано» в первое, что попалось ученому под руку в своей лаборатории: стеклянная бутылка из-под содовой. Для повышения прочности корпуса она была оплетена со всех сторон стальной проволокой.

Первые записи об уникальном жидком газе были сделаны в российском научном журнале «Нефтяное дело» в 1912 году. В статье рассказывалось о химике мистере W.O. Snelling, который изобрел способ хранения сгущенного газа в закупоренных бутылках. Такое топливо первоначально применялось для освещения отдаленных маяков, уединенных ферм и других важных экономических объектов.

Активное развитие технологии

Сжиженный газ в баллонах стал активно и практически повсеместно использоваться с началом 20 столетия — века индустриализации! Одними из первых преимущества прочных компактных и вместительных сосудов оценили медики. Устройства стали незаменимыми при лечении бронхиальной аст-

мы, а также для анестезии пациентов. Примерно с 1930-х баллоны начинают все активнее применяться в быту, сначала для заправки газовых зажигалок, а чуть позже — полноценных печей, водогреев и пр. В 1950-х достоинства металлических емкостей небольшого размера и большой вместимости оценили автомобилисты и инженеры-конструкторы автопрома. В городах стало появляться все больше автобусов и грузовиков, работающих на сжиженном газовом топливе.

Популярность металлических баллонов постоянно росла, а сфера их применения все активнее расширялась. Оставалась только одна нерешенная проблема — высокий уровень взрывоопасности таких баллонов. Но, вполне возможно, что в самое ближайшее время будут разработаны технологии абсолютно безопасного хранения газа в баллонах под давлением. И тогда человечество сможет найти еще массу способов использования этих простых и надежных емкостей на благо цивилизации!

Главный редактор Екатерина Румянцева

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

Безопасность и управление доступом в эпоху интернета вещей: многоуровневые подходы и инновационные решения

Сомова Мария Валериевна

СФУ ИКИТ «Сибирский Федеральный Университет Институт Космических и Информационных Технологий», Красноярск, Россия Кандидат педагогических наук, доцент E-mail: msomova@sfu-kras.ru

Макаренко Кирилл Евгеньевич

СФУ ИКИТ «Сибирский Федеральный Университет Институт Космических и Информационных Технологий», Красноярск, Россия Студент E-mail: lik312123@mail.ru

Аннотация: в статье рассматриваются модели аутентификации, контроля доступа и масштабируемости в области безопасности Интернета вещей. Проанализированы основные угрозы на различных уровнях архитектуры промышленного IoT и предложены методы защиты, включая различные криптографические схемы, а также распределенные технологии. Рассматриваются преимущества и ограничения предложенных решений, включая их применимость в различных сценариях. Отдельное внимание уделяется архитектуре туманных вычислений и использованию блокчейна для повышения безопасности и автономности IoT-систем.

Ключевые слова: Интернет вещей (IoT), промышленный IoT (IIoT), аутентификация, контроль доступа, безопасность, масштабируемость, криптография, блокчейн, туманные вычисления, защита данных.

Сразвитием Интернета вещей (*IoT*) и промышленного Интернета вещей (*IIoT*) возникает необходимость в надежных механизмах защиты данных и управления доступом. IoT объединяет миллиарды устройств, начиная от бытовых сенсоров и заканчивая промышленными комплексами, что делает их уязвимыми перед различными видами атак, такими как подмена устройств, перехват данных и несанкционированный доступ. Традици-

онные методы аутентификации и защиты данных зачастую оказываются недостаточно эффективными в масштабируемых и распределённых сетях *IoT*.

Архитектура промышленного Интернета вещей, рассмотренная в работе [1], основана на многоуровневой структуре, где каждому уровню соответствуют уникальные требования к защите. В рамках этой архитектуры выделяют четыре ключевых уровня:

- 1. Уровень сбора данных, включающий сенсоры и программируемые логические контроллеры (*PLC*), которые собирают информацию в режиме реального времени. Основные угрозы на этом уровне физические атаки и подмена устройств.
- 2. Сетевой уровень, отвечающий за передачу данных между узлами сети, включая беспроводные и проводные каналы связи. Ключевые риски перехват данных (МІТМ-атаки), атаки на маршрутизацию и отказ в обслуживании (DDoS).
- 3. Уровень обслуживания, где происходит обработка и анализ данных, а также реализуются механизмы безопасности, такие как обнаружение аномалий. Здесь угрозы включают компрометацию вычислительных узлов и несанкционированный доступ к данным.
- 4. Прикладной уровень, представляющий собой интерфейсы взаимодействия пользователя с системой. Главные опасности здесь атаки социальной инженерии и уязвимости приложений.

Для защиты *ПоТ* используются разнообразные методы аутентификации, адаптированные к особенностям взаимодействия устройств. Рассматриваются следующие подходы:

- GLARM схема лёгкой групповой аутентификации для M2M-коммуникаций, позволяющая устройствам обмениваться ключами без постоянного подключения к серверу. Преимущество GLARM устойчивость к MITM-атакам, однако она не обеспечивает высокую конфиденциальность.
- PASS протокол псевдоидентификации для Internet of Energy (IoE), который защищает идентификационные данные при передаче, но не решает проблемы маршрутизации трафика.
- *ECC-аутентификация* криптографическая схема, используемая в сенсорных сетях *IoT*. Она отличается высокой стойкостью к атакам методом перебора и меньшим потреблением ресурсов по сравнению с *RSA*, хотя требует сложной реализации.
- Двухфакторная аутентификация для Internet of Vehicles (IoV) комбинация традиционных криптографических методов с дополнительными механизмами (например, биометрия или

временные токены). Этот подход предотвращает атаки подмены устройств, но увеличивает вычислительную нагрузку.

Рассмотренные протоколы аутентификации обладают своими недостатками, что ограничивает их универсальность в архитектуре *ПоТ*, однако они могут применяться в специализированных задачах с учётом особенностей конкретной среды.

Работа [2] рассматривает проблему безопасности в Интернете вещей (IoT), объединяющем разнообразные устройства, такие как системы умного дома, промышленные датчики и медицинские гаджеты, которые взаимодействуют через интернет. Высокая уязвимость IoT обусловлена разнородностью протоколов, языков программирования и аппаратных решений, что привлекает хакеров для проведения атак.

Для обеспечения безопасности *IoT* необходимы следующие меры:

- Надёжная идентификация и аутентификация устройств для предотвращения несанкционированного доступа.
- Комплексная защита данных на всех уровнях, включая конфиденциальность, целостность и устойчивость к атакам.
- Автономность работы устройств и организация защищённых сетей.

Современные методы аутентификации, такие как пароли, биометрия и аппаратные ключи, имеют ограничения в IoT, а именно: проблема масштабируемости, так как традиционные централизованные системы не справляются с миллионами устройств; двухфакторная аутентификация требует значительных вычислительных мощностей, что усложняет её применение в маломощных устройствах.

IoT-устройства подвержены различным угрозам, включая сетевые атаки, компрометацию облачных платформ и эксплуатацию уязвимостей. Централизованные решения уязвимы из-за единой точки отказа, что ставит под угрозу всю сеть.

Блокчейн предлагается как альтернатива, предоставляя следующие *преимущества*: децентрализация аутентификационных данных, устраняя единственную точку отказа; автоматическое управление доступом через смарт-контракты; высокий уровень защиты благодаря распределённой структуре.

Меры для обеспечения безопасности IoT включают:

- Использование надёжного шифрования данных и идентификаторов устройств.
- Применение смарт-контрактов для автоматического контроля доступа.
- Проверка и обновление ПО с использованием децентрализованных механизмов.
- Гибкое масштабирование за счёт распределённого хранения данных.

Таким образом, блокчейн усиливает безопасность, надёжность и автономию *IoT*-сетей, делая его перспективным решением для защиты современного Интернета вещей.

В работе [3] представлены архитектурные решения и методы проектирования для эффективного управления *IoT*-устройствами в киберфизических системах (*CPS*) умных зданий. Исследуемые решения включают следующие ключевые аспекты:

Шаблоны проектирования

- Шаблон «Заместитель». Используется для контроля доступа, кэширования данных и оптимизации производительности. Этот шаблон минимизирует задержки и сетевые сбои, обеспечивая надежный доступ к устройствам через контролируемые узлы, что повышает устойчивость системы.
- Шаблон «Наблюдатель». Применяется для мониторинга и управления сценариями в реальном времени, например, для регулирования климата в зданиях. Этот шаблон позволяет эффективно собирать данные и отправлять уведомления или рекомендации пользователям, обеспечивая гибкую реакцию системы на изменения.
- Шаблон «Интерпретатор». Предназначен для обеспечения совместимости данных от различных *IoT*-устройств, имеющих разные форматы и диапазоны значений. Он преобразует данные в унифицированную форму для последующей обработки и использования в *CPS*.

Также были предложены архитектурные решения для повышения эффективности системы, включая кэширование данных и использование тайм-аутов при взаимодействии с исполнительными устройствами. Эти подходы снижают вероятность сетевых и аппаратных сбоев, обеспечивая стабильность работы системы даже при большом числе пользователей и устройств.

Эксперимент подтвердил эффективность предложенных шаблонов для управления климатом и обеспечивал стабильную работу системы в меняющихся условиях.

Разработанные архитектурные решения характеризуются *масштабируемостью*, гибкостью и возможностью адаптации к различным требованиям, что делает их пригодными для разработки крупных систем умных зданий в рамках концепции «умного города».

В статье [4] рассматривается архитектура туманных вычислений, использующая технологию блокчейн. Туманные узлы выполняют функции локальной обработки и хранения данных, располагаясь ближе к конечным устройствам по сравнению с облачными центрами, что снижает задержки передачи данных и ускоряет отклик системы. Блокчейн внедряется для решения вопросов безопасности и доверия, обеспечивая неизменяемость данных, прозрачность операций и надежную аутентификацию участников сети. В работе описаны алгоритмы консенсуса для частных блокчейнов в туманной архитектуре:

- *PBFT*: применяется в *Hyperledger Fabric*, обладает высокой эффективностью и устойчивостью к сбоям, но ограничен в масштабировании.
- *PoA*: основывается на доверии валидаторам, отличается простотой, эффективностью и масштабируемостью, но лишен стимулов для участников и медленнее подтверждает транзакции.
- *Raft*: использует выборного лидера для надежности, но требует дополнительных ресурсов на выборы, что может вызывать задержки.
- *PoAh*: разработан для *IoT*-сетей с ограниченными ресурсами, включает цифровую подпись и уровни доверия, что снижает затраты за счет скорости асимметричного шифрования. Подходит для граничного и туманного окружения.

Архитектура обеспечивает целостность, доступность и конфиденциальность данных через криптографию и хранение хешей в блокчейне, поддерживая надежную аутентификацию и защиту от несанкционированного доступа. Распределенная структура повышает устойчивость к атакам, а си-

стема вознаграждений стимулирует предоставление ресурсов. Однако остаются сложности, такие как зависимость от узлов оркестрации и необходимость развертывания инфраструктуры.

В заключение, быстрое развитие Интернета вещей (*IoT*) и его промышленного варианта (*IIoT*) представляет собой значительную технологическую революцию, открывающую новые горизонты для автоматизации и эффективного управления. Однако с увеличением числа подключённых устройств и их сложностью становится особенно актуальным решение проблем безопасности, которые могут угрожать целостности и конфиденциальности данных, а традиционные методы аутентификации и защиты данных не справляются с вызовами, особенно в масштабируемых распределённых сетях.

Предложенные архитектурные решения, включая блокчейн и туманные вычисления, наряду с многоуровневыми методами защиты, пред-

ставляют собой многообещающие шаги в области обеспечения безопасности *IoT*. Эти технологии не только усиливают механизмы аутентификации и управления доступом, но также способствуют созданию более устойчивых и надежных инфраструктур, способны справляться с возникающими угрозами.

Тем не менее, необходимо продолжать исследования в этой области, особенно учитывая быстрое развитие устройств и технологий. Устойчивость к атакам, масштабируемость решений и их адаптация к особенностям конкретных сценариев использования остаются важными областями для дальнейшего изучения. В конечном итоге развитие инновационных подходов и междисциплинарного сотрудничества станет ключевым фактором в формировании безопасного и эффективного будущего для *IoT* и *IIoT*, что, в свою очередь, станет основой для построения более «умного» и интегрированного общества.

Литература

- 1. Гетманюк И.Б., Федоров И. Р., Енгалычев Р.С. Исследование методов аутентификации в промышленном интернете вещей // Безопасность информационных технологий [S.l]. 2023., т. 30, № 1, С. 40–57.
- 2. Братко Д.В., Березин В.С. Роль аутентификации в системах Интернета вещей // Политехнический молодежный журнал. 2020. № 01(42). DOI: 10.18698/2541-8009-2020 01-570.
- 3. Кычкин А.В., Горшков О.В. Разработка программной системы для управления IoT устройствами с использованием структурных и поведенческих паттернов // Прикладная информатика. 2020. Т. 15. № 4. С. 44–53. DOI: 10.37791/2687-0649-2020-15-4-44-53
- 4. Пименов А.В., Федоров И.Р., Беззатеев С.В. Построение архитектуры туманных вычислений с использованием технологии блокчейн // Информационно-управляющие системы. 2022. № 5. С. 40–48. DOI: 10.31799/1684-8853-2022-5-40-48

МАРКЕТИНГ, РЕКЛАМА И PR

Влияние «быстрой моды» и перепроизводства на экономику и экологию развивающихся стран

Мамаева Виктория Алексеевна,

Многопрофильная средняя общеобразовательная Школа Права и экономики, Московская область, Россия Обучающийся e-mail: mariam-j@yandex.ru

Ситкин Дмитрий Владимирович

Научный руководитель
Многопрофильная средняя общеобразовательная
Школа Права и экономики,
Московская область, Россия
Учитель географии
e-mail: info@leschool.ru

Аннотация: в статье автор исследует связи и влияние деятельности крупных производственных компаний, работающих по принципу «быстрой моды», на экономику и экологическую ситуацию в беднейших странах мира. В качестве наглядного примера выбрана крупнейшая производственная компания и то государство, где компания расположило свои основные производственные мощности. Приведены статистические данные и сделаны выводы. Предложены варианты решения проблемы.

Ключевые слова: быстрая мода, маркетинг, быстрые продажи, крупные производственные компании, развивающиеся страны, экологические проблемы.

Термин «fast fashion» в переводе означает «быстрая мода» — это современная тенденция, бизнес-модель индустрии моды, при которой ассортимент и коллекции одежды, обуви и аксессуаров обновляются несколько раз в сезон по принципу: «как можно больше коллекций в кратчайшие сроки».

Только задумайтесь! Ведь речь идет даже не о сезонном обновлении ассортимента, а о непре-

рывном процессе производства и потребления товаров! Крупные производственные холдинги, такие как Nike, Adidas, Zara, Michael Kors и многие другие «модные» компании в погоне за прибылью, направляют все свои маркетинговые усилия на продвижение идей «быстрой моды» и смены коллекций за коллекцией. В результате такого подхода к моде происходит процесс избыточного производства товаров очень низкого качества, зато по

привлекательно-низкой цене. Как следствие, происходит избыточное потребление со стороны покупателя. Наверняка, каждый из нас уже мог ощутить эту тенденцию на себе: когда одежда или обувь одевается буквально пару раз, после чего изза ужасного качества или в силу того, что «прошла мода» — отправляется на свалку.

С одной стороны, принято считать, что тенденция «быстрой моды» оживляет и дает рост для экономики тех стран, где крупные компании размещают свои производства — Камбоджа, Вьетнам, Бангладеш, Перу и другие. С другой стороны, этот процесс создает большие экологические проблемы для этих регионов нашей планеты, усугубляя и так уже не простую ситуацию с экологией на всей Земле.

Давайте разберемся на конкретном примере и цифрах — а какова же реальная роль этой модной тенденции, которую так поддерживают крупные производители, в развитии и экологии беднейших стран нашей планеты?

Компания Nike... Just Do It...

Это и есть очень яркий пример «быстрой моды» и потребления, а также превосходного маркетинга. Каждый ученик моей школы и даже многие учителя и родители имеют кроссовки или сникерсы фирмы Nike — Nike Jordan, Cortez, Air Force и с удовольствием в них щеголяют.

Почему Nike? Мой выбор объясняет впечатляющая статистика — согласно информации, опубликованной на официальном сайте Statista Research Department: «... Nike является лидером в своей индустрии... с продажами, достигающими почти 49 миллиардов долларов США в 2024 году. Это в два раза больше, чем в компании Adidas, которая занимает второе место» [1].

Выручка компании Nike в период с 2009 года до 2024 год увеличилась с 2,18 до 21,52 миллиардов долларов США, то есть более чем в 10 раз [2].

Отличная работа, Nike!

Но давайте посмотрим какова обратная сторона этой блестящей маркетинговой деятельности?

Согласно официальной информации по состоянию на январь 2025 года в компании Nike занято всего 1 149 901 рабочих [3]. А основные производственные мощности в настоящее время сосредоточены во Вьетнаме, где работают 530

000 вьетнамцев [4]. Следовательно, почти половина всех сотрудников Nike живут и работают во Вьетнаме.

Выбор Вьетнама для Nike в 1995 году, когда компания начинала там свой бизнес, был очевиден. Минимальный уровень оплаты труда составлял тогда 42 доллара США в месяц. Розничная цена одной пары обуви составляет 149,50 долларов США, а затраты компании на заработную плату для производства одной пары обуви составляли 1,50 долларов США, что составляло всего лишь 1% от цены продажи [5]. Основная идея такого бизнеса очевидна: исключительно получение прибыли за счет экономии на затратах в беднейших странах мира.

Тогда возникают следующие вопросы. Что дает организация производства большой компании в бедной, слабо-развитой стране:

- 1. Обеспечение занятости или это больше похоже на эксплуатацию местного населения?
- 2. Существенный экономический подъем или зависимость от экспорта и, в итоге, решений и действий более сильной страны?
- 3. Какое влияние этот процесс оказывает на состояние экологии?

Занятость или эксплуатация?

Широко распространенным мнением является то, что большие корпорации, размещая свои производства в развивающихся странах, создают рабочие места, тем самым обеспечивая работой и доходом местное население. Звучит довольно убедительно и позитивно.

Но вернемся к Nike. По официальным данным количество занятых во Вьетнаме на конец 2024 года составляло 52,7 миллионов человек [6]. Получается, что Nike предоставляет рабочие места лишь для 1% всего занятого населения этой страны (расчет 530 000:52 700 000). Очевидно, это не такой уж значительный вклад в ситуацию с безработицей.

В то же время, зафиксировано много случаев нарушений прав трудящихся на фабриках, таких, как нечеловеческие условия работы, переработки и даже обман, связанный с невыплатой минимального уровня заработной платы.

Таким образом, польза от присутствия крупного производства на территории Вьетнама с точки зрения борьбы с безработицей, нищетой и бедностью — не очевидна.

Экономический рост или зависимость?

Без всякого сомнения, иностранные инвестиции способствуют экономическому росту, создавая дополнительный доход и формируя дополнительную налоговую базу. Кроме того, они обеспечивают рост экспортной активности, расширяют возможности доступа к образованию, новым технологиям, формируют внешние связи с другими, более развитыми странами.

Компания Nike и Вьетнам «дружат» около 30 лет, и их «дружба» с каждым годом становится все сильнее. К настоящему времени у компании Nike уже 155 фабрик во Вьетнаме [7].

Согласно информации Всемирного Банка, Вьетнам представляет собой замечательный пример успешного развития: от беднейшей страны до средне-развитой экономики — за одно поколение [8]. Так, за последние 10 лет годовой экономический рост составлял около 6,4 %-7.1 % (за исключением периода пандемии 2020-2021 года) [8]. А главным фактором такого роста являлся экспорт товаров. Официальная статистика выглядит неплохо. Но давайте посмотрим глубже.

Как я упомянула ранее, выручка Nike по всему миру выросла в 10 раз за последние 10 лет [9]. А как на счет минимального уровня оплаты труда во Вьетнаме за тот же период? Казалось бы, и этот показатель должен измениться также. И вот статистика: в 2014 году минимальный уровень заработной платы составлял 2 700 000 вьетнамских донгов в месяц [9] (то есть 127 долларов США [17]), к июлю 2024 года минимальная зарплата достигла 4 960 000 вьетнамских донгов [9], что составляет 195 долларов США [18]. В итоге, минимальный уровень заработной платы за 10 лет увеличился лишь на 35% (расчет (195-127): 127)).

Эта статистика разочаровывает и, скорее, свидетельствует о том, что для Вьетнама производство этой компании уж точно не является фактором роста благосостояния и уровня жизни населения страны. Кроме того, это ведет к однобокому экспортноориентированному развитию и зависимости от более сильных, развитых стран. Этот вывод подтверждается мнением местного экономиста-профессора Кеничи Оно, который подвел итоги 30-летнего развития Вьетнама: "...многие иностранные компании рассматривают Вьетнам

как место осуществления простых бизнес-процессов, а не место создания высоких технологий и дизайна, что делает Вьетнам сильно зависимым от экспорта и приводит к структурным изменениям в экономике» [19].

Экологические проблемы, связанные с тенденцией «быстрой моды» и перепроизводства

К сожалению, «быстрая мода» и соответствующее производство приводят к излишнему потреблению природных ресурсов, загрязнению водных объектов и воздуха, что не может не сказываться на здоровье местного населения.

Так, Вьетнам — страна, которая значится в рейтингах самых грязных стран мира, является одной из пяти стран, оказывающих наиболее разрушительное воздействие на мировой океан. Пластиковый мусор — один из главных экологических вызовов Вьетнама [22].

Проблема также проявляется в загрязнении атмосферы, сокращении общей площади лесных земель, уменьшении биологической продуктивности почв.

Самым загрязненным городом в мире в 2025 году признана столица Вьетнама — город Ханой [21]. Согласно данным Всемирной организации здравоохранения во Вьетнаме очень большая проблема с загрязнением воздуха, в результате чего ежегодно умирает, по крайней мере, 60 000 человек [21].

Главными социально-экономическими причинами экологических проблем в этой стране считаются бедность населения, отсталое хозяйство, большая плотность и быстрый рост населения, а также применение «грязных» технологий.

Последнее относится и к компании Nike. Не случайно в компании разработаны меры по оптимизации производства и сохранению окружающей среды. К 2025 году в планах компании был полный переход на возобновляемые источники энергии, к 2030 году — снижение выбросов углерода в атмосферу на 30 %, а к 2050-му — на 100%. Также компания планирует сократить производственный мусор на 99% и использовать более миллиарда выброшенных пластиковых бутылок для создания футболок и кроссовок Flyknit [22]. А тот мусор, который не пригодится в соз-

дании продукции, компания планирует передать на строительство детских площадок, теннисных кортов и стадионов.

Производство крупных компаний, в том числе и Nike, безусловно, оказывает негативное влияние на окружающую среду, а это, в свою очередь, влияет на здоровье и качество жизни людей.

Заключение

Таким образом, в результате исследования можно сделать следующие выводы:

1) С одной стороны, деятельность крупных промышленных предприятий на территории отсталых стран приносит пользу этим странам: растёт объём производимой продукции, увеличиваются поступления в бюджет, происходит знакомство с современными технологиями и их использование, создаются рабочие места для местного населения, что снижает уровень нищеты и бедности. Иными словами, «быстрая мода» и производство, безусловно, предоставляют определенные экономические блага для развивающихся стран.

2) С другой стороны, производство по принципу «быстрая мода» приводит к излишнему потреблению природных ресурсов, загрязнению водных объектов и воздуха, что сказывается на здоровье местного населения.

Как видно на примере Вьетнама, развивающиеся страны с быстрыми темпами экономического развития очень подвержены негативному экологическому воздействию, именно они более уязвимы и страдают от современных тенденций «быстрой моды» и перепроизводства.

К сожалению, эта другая сторона модного тренда довольно негативна, и пока эта тенденция будет сохраняться, ничего не изменится.

Несмотря на то, что в компании Nike уделяется внимание проблемам экологии, хочется напомнить, что пересмотр маркетинговой политики в сторону «устойчивой» моды, применение принципов устойчивого развития и справедливой торговли, а также более ответственный экологический подход в развивающихся регионах могли бы улучшить сложившуюся ситуацию.

Литература

- 1. Statista Research Department "Мировые продажи ведущих компаний по производству одежды, аксессуаров и обуви в 2024 году", 21 Марта, 2025. URL: https://www.statista.com/statistics/900271/leading-sportswear-and-performance-wear-companies-by-sales-worldwide/#:~:text=As%20one%20of%20the%20largest,that%20of%20 second%2Dplaced%20Adidas
- 2. Кася Дэвис "Выручка NIKE по всему миру 2009-2024". 14 Января, 2025. URL: https://www.statista.com/statistics/294512/nike-s-dtc-revenue-worldwide/
- 3. Информация с официального сайта Nike об общем количестве работников URL: https://manufacturingmap.nikeinc.com/
- 4. Марк Барнс и Аниша Шарма "Фабрики Nike и сеть поставщиков во Вьетнаме", 6 Августа, 2024, напечатано Vietnam Briefing URL: https://www.vietnam-briefing.com/news/where-are-nikes-factories-located-in-vietnam.html/
- 5. Джефф Баллинджер. "Nike делает это во Вьетнаме", Март 1997, Vol.18 URL: https://www.multinationalmonitor.org/mm1997/031997/ballinger.html#ballinger
- 6. "Более чем 52 млн работников зарегистрированы как имеющие работу", 11 октября, 2024, опубликовано в издании Vietnamnews. URL: https://vietnamnews.vn/society/1664761/more-than-52-million-workers-are-recorded-as-having-jobs.html
- 7. Марк Барнс и Аниша Шарма "Фабрики Nike и сеть поставщиков во Вьетнаме", 6 Августа, 2024, напечатано Vietnam Briefing. URL: https://www.vietnam-briefing.com/news/where-are-nikes-factories-located-in-vietnam.html/ https://www.worldbank.org/en/country/vietnam/overview
- 8. Информация с официального сайта Всемирного Банка. URL: https://data.worldbank.org/indicator/NY.GDP MKTP.KD.ZG?locations=VN&start=2015
- 9. "Региональная минимальная заработная плата во Вьетнаме по регионам за последние 10 лет". 11 Июля 2024. URL: https://lawnet.vn/thong-tin-phap-luat/en/lao-dong-tien-luong/region-based-minimum-wage-in-vietnam-over-the-past-10-years-159251.html

- 1. Кася Дэвис "Выручка NIKE по всему миру 2009-2024". 14 Января, 2025. URL: https://www.statista.com/statistics/294512/nike-s-dtc-revenue-worldwide/
- 2. Информация с официального сайта Nike об общем количестве работников URL: https://manufacturingmap.nikeinc.com/
- 3. Марк Барнс и Аниша Шарма "Фабрики Nike и сеть поставщиков во Вьетнаме", 6 Августа, 2024, напечатано Vietnam Briefing URL: https://www.vietnam-briefing.com/news/where-are-nikes-factories-located-in-vietnam.html/
- 4. Джефф Баллинджер. "Nike делает это во Вьетнаме", Март 1997, Vol. 18. URL: https://www.multinationalmonitor.org/mm1997/031997/ballinger.html#ballinger
- 5. "Более чем 52 млн работников зарегистрированы как имеющие работу", 11 октября, 2024, опубликовано в издании Vietnamnews. URL: https://vietnamnews.vn/society/1664761/more-than-52-million-workers-are-recorded-as-having-jobs.html
- 6. Марк Барнс и Аниша Шарма "Фабрики Nike и сеть поставщиков во Вьетнаме", 6 Августа, 2024, напечатано Vietnam Briefing.

URL: https://www.vietnam-briefing.com/news/where-are-nikes-factories-located-in-vietnam.html/ https://www.worldbank.org/en/country/vietnam/overview

- 7. Информация с официального сайта Всемирного Банка. URL: https://data.worldbank.org/indicator/NY.GDP MKTP.KD.ZG?locations=VN&start=2015
- 8. "Региональная минимальная заработная плата во Вьетнаме по регионам за последние 10 лет". 11 Июля 2024. URL: https://lawnet.vn/thong-tin-phap-luat/en/lao-dong-tien-luong/region-based-minimum-wage-in-vietnam-over-the-past-10-years-159251.html
- 9. Обменный курс в 2014 21,187 VDN за 1 USД. URL: https://www.exchange-rates.org/ru/%D0%B8%D 1%81%D1%82%D0%BE%D1%80%D0%B8%D1%8F-%D0%BA%D1%83%D1%80%D1%81%D0%BE%D0%B2/vnd-usd-2014
- 10. Текущий обменный курс 25,418 VDN за 1 USD. URL: https://www.exchange-rates.org/ru/истори-я-курсов/usd-vnd-2025
- 11. "Отечественные и международные эксперты подводят итоги 30-летнего развития Вьетнама". 23 Февраля, 2024. URL: https://vietnamlawmagazine.vn/domestic-international-experts-review-vietnams-30-year-development-71324.html
- 12. Нгуен Кхак Зянг "Воздушный апокалипсис» сегодня: Вьетнам на перекрестке прогресса и загрязнения окружающей среды". 19 февраля, 2025. URL: https://fulcrum.sg/airpocalypse-now-vietnam-at-crossroads-of-progress-and-pollution/
- 13. "Загрязнение воздуха во Вьетнаме", напечатано в ВОЗ. URL: https://www.who.int/vietnam/health-topics/air-pollution
- 14. "Экология Вьетнама: вызовы, достижения и перспективы". URL: https://viet-house.ru/news/ekologiya_vetnama/

МЕДИЦИНА

Адаптация к ортостатическим нагрузкам после пребывания в условиях длительной замкнутой изоляции

Степанова Галина Павловна

Государственный научный центр РФ. Институт медико-биологических проблем, РАН, Москва Россия. Кандидат медицинских наук. Ведущий научный сотрудник gallog15@mail.ru

Дегтеренкова Наталья Васильевна

Государственный научный центр РФ. Институт медико-биологических проблем, РАН, Москва, Россия Научный сотрудник

Степанова Ксения Юрьевна

Государственный научный центр РФ. Институт медико-биологических проблем, РАН, Москва, Россия Научный сотрудник

Аннотация: в рамках работы проведены исследования с участием шести добровольцев (трёх мужчин и трёх женщин), находившихся в условиях моделирования изолированной искусственной среды обитания на протяжении четырёх месяцев. Целью эксперимента было изучение влияния замкнутого пространства на механизмы адаптации сердечно-сосудистой системы (ССС) к постуральным нагрузкам.

Вопросы регуляции функций ССС, её способности к адаптации в условиях различных стрессорных воздействий, а также выявление предболезненных состояний имеют особое значение для современной медицины. Одним из информативных методов диагностики нарушений в регуляции сердечно-сосудистой системы является проведение ортостатической пробы с использованием поворотного стола. В ходе исследования использовались следующие режимы: исходное положение (0°), пассивный наклон под углом +70° на протяжении 20 минут и последующий восстановительный период в положении 0°, продолжительностью 5 минут. На основании электрокардиографических данных установлено, что все участники переносили пробу удовлетворительно как до, так и после периода изоляции.

Анализ результатов реоэнцефалографии и показателей вариабельности сердечного ритма (HF, LF и VLF) в процессе проведения ортостатической пробы выявил, что длительное пребывание в изоляции приводит к изменениям вегетативной регуляции сердечно-сосудистой системы.

Ключевые слова: длительная изоляция, пассивная постуральная проба.

Статистика по заболеваниям сердца и сосудов вызывает тревогу: сегодня они — главная причина смертности в мире, унося каждую третью жизнь. Всплеск этих болезней в конце XX и начале XXI века напрямую связан с тем, как изменился наш образ жизни. Человеческое тело формировалось тысячелетиями эволюции и уже давно перестало меняться. Однако за последние 60 лет наша жизнь изменилась до неузнаваемости. Уровень физической активности упал так стремительно, что сердечно-сосудистая система просто не успела к этому приспособиться. Это, наряду с колоссальным нервным напряжением, стало одной из главных причин возникновения сердечно-сосудистых патологий.

Чтобы понять, насколько хорошо организм адаптируется, врачи используют специальные нагрузочные тесты. Один из таких методов — пассивная ортостатическая проба. Поскольку состояние ССС рассматривается как индикатор адаптационных реакций всего организма, эта проба предоставляет достаточное представление об общем адаптационном потенциале человека.. Чтобы оценить резервы организма и его способность справляться с негативными факторами, важно выбрать правильные тесты и наиболее информативные показатели. Учёные Р. М. Баевский и А. П. Берсенева [2] считают адаптационные возможности главным индикатором здоровья, который показывает не только текущее состояние, но и прогноз на будущее. По мнению других исследователей, В. В. Парина и Ф. 3. Меерсона, резерв органа или системы — это разница между его максимальной работоспособностью и уровнем в состоянии покоя. [1].

На основе идеи о том, что сердечно-сосудистая система — это индикатор адаптационных реакций целостного организма [2], был разработан метод анализа вариабельности сердечного ритма (ВСР). Он широко используется в медицине и физиологии, так как позволяет комплексно оценить состояние механизмов регуляции в организме. Анализ ВСР даёт информацию об общей активности регуляторных механизмов, нейрогуморальной регуляции сердца и соотношении симпатического и парасимпатического отделов нервной системы. Активность этих отделов является результатом многоуровневой реакции системы регуляции ССС, которая изменяет свои параметры, чтобы обеспечить оптимальный адаптационный ответ всего ор-

ганизма. Этот метод широко применяется в медицине и физиологии, позволяя комплексно оценить состояние механизмов регуляции физиологических функций. Анализ ВСР даёт информацию об общей активности регуляторных механизмов, нейрогуморальной регуляции сердца и соотношении симпатического и парасимпатического отделов нервной системы. Активность этих отделов является результатом многоуровневой реакции системы регуляции ССС, которая изменяет свои параметры, чтобы обеспечить оптимальный адаптационный ответ всего организма.

Цель исследования: определить, как условия длительной изоляции влияют на адаптационные механизмы сердечно-сосудистой системы к постуральным нагрузкам у добровольцев.

Задачи исследования: оценить переносимость ортостатических проб до и после четырёх месяцев изоляции; проанализировать динамику показателей регуляции физиологических функций организма в ходе пассивной постуральной ортостатической пробы (ППОП) на разных этапах эксперимента.

Материалы и методы: в эксперименте участвовало 6 добровольцев: трое мужчин в возрасте (31-44 года), и три женщин в возрасте (29-33 года). Все испытуемые были допущены ВЭК и подписали информированное согласие на участие в эксперименте. Исследование проводилось однократно до изоляции (фоновые исследования) и на 2 сутки после изоляции.

Методики

Пассивная постуральная ортостатическая проба (ППОП) проводилась на поворотном столе, где угол режимов соответствовал: фон — 0° ; +70° длительностью 20 минут; период восстановления при 0° — 5 минут. Использовались: непрерывная регистрация ЭКГ с помощью модульной системы Easy ECG компании ООО «АТЕС МЕДИКА» и реоэнцефалографии (РЭГ) с помощью прибора «Энцефалан-ЭЭГР- 13103», каждые пять минут и по показаниям измерялось артериальное давление по Короткову.

Для анализа переносимости нагрузочных проб были выбраны показатели:

- постоянной записи ЭКГ: ритм, сегменты PQ, QRS и ST, амплитуда и конфигурация зубцов P и T; BCP;
- фон, каждые 5 мин пробы и по показаниям АД (мм. рт.ст.): систолическое и диастолическое артериальное давление;

- постоянной записи РЭГ: реографический индекс для оценки величины пульсового кровенаполнения сосудов (ПК), который определяется как отношение величины амплитуды РЭГ-волны к величине стандартного калибровочного сигнала и дикротический индекс определение тонуса артериол (зависит от периферического сосудистого сопротивления и рассчитывается как отношение величины амплитуды РЭГ-волны на уровне инцизуры к максимальной амплитуде волны).
 - Для анализа ВСР были выбраны показатели [3]:
- HF "High Frequency" абсолютная или относительная мощность спектра высокочастотных колебаний сердечного ритма (дыхательные волны) — отражает активность парасимпатического звена регуляции;
- LF "Low Frequency" абсолютная или относительная мощность спектра низкочастотных колебаний сердечного ритма (сосудистые вол-

- ны) отражает активность симпатического вазомоторного центра в частности, системы регуляции сосудистого тонуса;
- VLF "Very Low Frequency" абсолютная или относительная мощность спектра очень низкочастотных колебаний сердечного ритма отражает активность симпатических центров энерго-метаболического уровня регуляции.

Результаты

Во время ортостатической пробы по данным ЭКГ как в фоновом периоде, так и на 2 сутки после изоляции у всех испытателей нарушений ритма, проводимости и изменений сегмента ST по ишемическому типу не зафиксировано. Динамика амплитуд зубцов ЭКГ соответствовала выполняемой нагрузке. Нагрузочные ортостатические пробы расценены как «отрицательные», с хорошей переносимостью. Переносимость пробы оценивалась соответственно таблице 1.

Таблица 1. Критерии оценки переносимости нагрузочных проб

	ПЕРЕНОСИМОСТЬ					
ПОКАЗАТЕЛИ	Хорошая	Удовлетворительная	Пониженная			
Конечное систолическое давление	Обычно несколько снижается, оставаясь в пределах нормальных величин; реже наблюдается повышение его.	Умеренно снижается, реже остается в пределах исходных величин	Отчетливо снижается			
Пульсовое давление	Несколько снижается, оставаясь при этом достаточно высоким (выше 30 мм рт. ст.)	Снижается до 25-20 мм рт. ст. в некоторых случаях при падении диастолического давления может быть весьма высоким.	Отчетливо снижается (менее 20 мм рт. ст.); иногда в связи с падением диаст. Давления бывает довольно высоким.			
ЭКГ: а) частота сердечных сокращений	До 100 уд. 1 мин. Правильный, умеренная дыхательная аритмия	До 120 уд. 1 мин Выраженная дыхательная аритмия, миграция водителя ритма по предсердиям, единичная предсердная экстрасистолия.	Более 130 уд. 1 мин. Частая председная желудочковая экстраситолия, групповая экстраситолия, аллоритмия и др.			
б) ритм сердечных сокращений в) зубец Т	Снижение амплитуды до 30% от исходного уровня	Снижение амплитуды до 50% от исходного уровня, небольшая преходящая деформация зубца Т в одном- трех отведениях	Значительное снижение амплитуды вплоть до изоэлектрического уровня, появление двухволновости, двухфазности и инверсия.			

	ПЕРЕНОСИМОСТЬ					
ПОКАЗАТЕЛИ	Хорошая	Удовлетворительная	Пониженная			
РЭГ:						
а) амплитуда РЭГ	Небольшое уменьшение, до 30% по сравнению с исходным	Уменьшение до 40% по сравнению с исходным	Уменьшение более 40% по сравнению с исходным			
б) дикротический индекс	Снижение до 25% по сравнению с исходным	Снижение до 40% по сравнению с исходным	Снижение более 40% по сравнению с исходным			

Проведен анализ характеристик ВСР и АД непосредственно перед пробой, каждые пять минут ППОП и периода восстановления. Данные средних величин представлены в таблице 2.

Как следует из приведенных данных, после изоляции наблюдается снижение цифр ЧСС и систолического артериального давления (АДс) на фоне

повышения диастолического давления (АДд). Динамика этих показателей неоднозначна. Поведение «кривой» ЧСС и АДд после изоляции повторяет «кривую» ЧСС до изоляции. Динамика АДс во время пробы после изоляции, в отличие от фоновых, носила не однонаправленный характер: отмечалось как снижение, так и подъемы цифр АДс.

Таблица 2. Динамика изменений средних величин показателей АД (мм рт. ст.), ЧСС(уд1мин) и ВРС (ms²/Hz X 10⁻³) во время ортостатической пробы до изоляции и после.

		фон	1'	5'	10'	15'	20'	5' ПВ
ЧСС	ДО	66±9	76±3	78±3	83±1	88±1	86±2	60±2
	ПОСЛЕ	59±8	70±3	72±3	74±3	75±3	76±3	56±3
Сист.	ДО	121±6	119±4	114±2	111±4	111±4	106±4	117±4
АД	ПОСЛЕ	117±3	114±4	119±5	116±4	121±5	115±5	120±4
Диаст.	ДО	71±6	75±4	76±3	76±3	76±3	72±5	72±6
АД	ПОСЛЕ	77±5	80±5	82±3	81±3	82±2	82±2	77±5
HF	ДО	1,62±0,6	1,65±0,3	1,2±0,2	1,23±0,3	1,58±0,1	2,6±0,3	1,5±0,5
	ПОСЛЕ	1,17±0,6	1,17±0,2	0,85±0,1	0,87±0,1	0,72±0,2	1,07±0,8	1,23±0,2
LF	ДО	3,25±0,9	3,55±0,4	2,53±0,7	2,45±0,6	2,98±0,3	3,28±0,7	2,4±0,73
	ПОСЛЕ	1,9±0,2	2,05±0,2	1,68±0,3	1,92±0,4	1,58±0,2	1,95±0,9	2,03±0,2
VLF	ДО	3,35±0,9	4,88±0,9	3,4±0,4	2,9±0,1	3,68±0,4	6,45±0,9	4,53±0,7
	ПОСЛЕ	3,33±0,7	3,33±0,8	2,1±0,59	1,82±0,8	1,52±0,2	2,02±0,9	4,03±0,9

Показатели вариабельности ритма (HF, LF и VLF), регистрируемые во время нахождения испытателя в ортостатическом положении, после изоляции снизились. Изменения более выражены в сегменте LF. На фоне снижения цифровых значений LF после изоляции отмечалось незначительная динамики данного показателя на предлагаемую нагрузку. Относительные значения данных характеристик ВСР после изоляции к фоновым данным представлены на рисунке 1. Изменения показателей гемодинамики сосудов вертебробазилярного

бассейна во время проведения функциональной нагрузочной пробы (ППОП) оценивали методом РЭГ, в основе которого лежит принцип регистрации изменений электрического сопротивления тканей в связи с меняющимся пульсовым кровенаполнением сосудов. Следует отметить, что после пребывания в замкнутом объекте по сравнению с фоном, как до проведения ППОП, так и вовремя ППОП, регистрируется явная тенденция к увеличению пульсового кровенаполнения сосудов и снижению дикротического индекса РЭГ, отражающего

тонус сосудов среднего и мелкого калибра Таким образом, условия «изоляции» (состав рециркулируемого воздуха для дыхания, влажность, освещенность, ограниченное пространство и ряд других условий, включающих особенности распределения обязанностей членов экипажа и регламентация времени занятости испытателей в рабочие и выходные дни) позволяют определить влияние её на организм человека. Ещё в 1967 году В. В. Париным была сформулирована концепция о системе кровообращения как индикаторе адаптационных реакций целостного организма.

Исследованию регуляции ССС, возможностям ее адаптации к различным стрессорным условиям, выявлению донозологических изменений в механизмах ее регуляции, а также оценке эффективности проводимых профилактических мероприятий

уделяется большое значение в медицине. Выявлены особенности адаптации ССС к ППОП: тенденция к увеличению пульсового кровенаполнения, снижение тонуса сосудов, преимущественно артериол, вертебрабазилярной системы, на фоне ригидного ответа ВНС на нагрузку после 4-х месячной изоляции более низкие значения ЧСС, умеренное повышение АДс и АДд. Цифровые значения показателя VLF во время нагрузки после изоляции демонстрируют признаки энергодефицита.

Исследование подтверждает, что воздействие на человека длительной (4 месяца) изоляцией в замкнутом пространстве способствует формированию изменений в механизмах адаптации ССС, донозологические проявления которых выявляются при проведении нагрузочных проб на велоэргометре и ортостатическом столе.

Литература

- 1. Парин В.В., Меерсон Ф.З. Напряжение миокарда и функциональный резерв сердца. Избр. тр. Т.1. Кровообращение в норме и патологии. — М.: Наука, 1974. — С. 69-83.
- 2. Баевский Р.М., Берсенева А.П. Введение в донозологическую диагностику. М.: Слово, 2008. 220 c.
- 3. Баевский Р.М., Иванов Г.Г., Чирейкин Л.В. и др. Анализ вариабельности сердечного ритма при использовании различных электрокардиографических систем. // Вестник аритмологии. 2001. № 24. С. 77-78.

ПЕДАГОГИКА

Использование приемов сенсорной интеграции в коррекционной работе учителя-дефектолога

Булатова Регина Равильевна

МДОАУ «Детский сад № 106»г. Орск, учитель-дефектолог Email: regina.zainagabdinova@mail.ru

Аннотация: статья посвящена применению научно обоснованного подхода сенсорной интеграции (СИ) в коррекционной работе с детьми с нарушениями развития. Цель — обосновать необходимость и раскрыть методику использования СИ для преодоления сенсорных дисфункций, лежащих в основе поведенческих, эмоциональных, когнитивных, моторных и коммуникативных трудностей. Методология включает комплексную оценку сенсорного профиля, создание адаптированной среды, целенаправленные вестибулярные активности и стимуляцию проприоцептивной системы. Применение СИ позволяет стабилизировать состояние ребенка, развить моторные навыки и координацию, создать основу для речи и когнитивных функций, повышая комфорт и эффективность коррекции. Владение принципами СИ — неотъемлемый компонент квалификации дефектолога для преодоления сенсорных барьеров и раскрытия потенциала ребенка.

Ключевые слова: сенсорная интеграция, коррекционная педагогика, дети с ОВЗ, сенсорная обработка, дефектология, сенсорный профиль, адаптированная сенсорная среда, вестибулярная стимуляция.

Всфере специальной педагогики, где каждый ребенок уникален, поиск эффективных методов является постоянной задачей специалиста. Одним из научно обоснованных и признанных подходов заслуженно считается сенсорная интеграция. Ее приемы стали неотъемлемой частью коррекционно-развивающего процесса для детей с самыми разными особенностями развития, такими как расстройства аутистического спектра, синдром дефицита внимания и гиперактивности, детский церебральный паралич, задержки психического и речевого развития, интеллектуальные нарушения и другие.

Теория сенсорной интеграции, разработанная Э. Джин Айрес, объясняет, как нервная система обрабатывает информацию не только от пяти основных органов чувств, но и от вестибулярного аппарата, отвечающего за чувство равновесия и движения, и проприоцепции, обеспечивающей ощущение положения тела в пространстве и мышечных усилий [1, с. 17].

У многих детей с нарушениями развития процесс обработки сенсорной информации бывает затруднен. Это может проявляться в различных формах. Сенсорная гиперчувствительность выражается в болезненной реакции на обычные стимулы, например, избегание определенных звуков, света, прикосновений, запахов, вкусов или движений. Сенсорная гипочувствительность характеризуется постоянным стремлением к интенсивным ощущениям, таким как кружение, прыжки, сильное давление на предметы. Сенсорная дезориентация приводит к плохой координации, неуклюжести и нарушению схемы тела. Нарушение сенсорной модуляции проявляется в неспособности адекватно регулировать интенсивность реакции на стимул, что ведет либо к перевозбуждению, либо к игнорированию важной информации [2, с. 6; 3, с. 67].

Эти трудности комплексно влияют на все сферы развития ребенка. В эмоционально-волевой сфере это может быть повышенная тревожность, страхи, истерики и трудности с саморегуляцией. Познавательная деятельность страдает из-за невозможности сосредоточиться, вызванной сенсорными отвлекающими факторами или их недостатком, что создает проблемы в обучении. Речевое развитие часто нарушается вследствие проблем обработки слуховой информации или оральной чувствительности. Моторное развитие задерживается, проявляясь проблемами с крупной и мелкой моторикой, координацией и графомоторными навыками. Социальная коммуникация затрудняется из-за неадекватных реакций ребенка на сенсорные стимулы в группе [4, с. 34; 5, с. 87].

Учитель-дефектолог, владеющий приемами сенсорной интеграции, целенаправленно включает их в свои занятия, создавая оптимальную сенсорную среду. Первоочередной задачей является комплексная оценка сенсорного профиля ребенка. Она начинается с тщательного наблюдения в различных ситуациях, включая занятия, свободную игру и рутинные процедуры. Ключевую информацию предоставляет структурированное анкетирование родителей или воспитателей с использованием валидизированных опросников, таких как «Сенсорный профиль». Для объективизации данных проводятся диагностические пробы с контролируемым предъявлением разных видов сенсорных стимулов. Синтез данных наблюдений, анкет и проб позволяет составить полную картину сильных сторон и трудностей ребенка и служит научной основой для разработки строго индивидуальной коррекционной программы [6, с. 36; 7, с. 148].

Следующим ключевым аспектом является создание оптимальной сенсорной среды на заня-

тии, которая должна быть одновременно безопасной и обогащенной. Это требует тщательной организации пространства, включая продуманное зонирование для выделения тихой зоны отдыха и активной зоны для игр. Критически важно минимизировать отвлекающий визуальный и слуховой шум за счет спокойной цветовой гаммы, приглушенного освещения, звукопоглощающих материалов и доступности наушников с шумоподавлением для детей с аудиальной гиперчувствительностью. Обеспечение предсказуемости достигается через визуальное расписание, неизменные ритуалы начала и завершения занятия, а также подготовку к переходам между видами деятельности. Уважение к индивидуальным потребностям реализуется через предоставление ребенку осознанного выбора инструментов, места для сидения или уровня освещенности. Такая гибкая, отзывчивая и предсказуемая среда минимизирует дистресс и способствует раскрытию потенциала ребенка [5, с. 127; 8, с. 109].

Целенаправленное включение специально подобранных сенсорных активностей служит мощным инструментом как для немедленной регуляции состояния ребенка, так и для развития базовых нейрофизиологических функций. Особое внимание уделяется работе с вестибулярной системой как ключевой. Для детей с гипочувствительностью или сенсорным поиском предлагаются интенсивные, разнообразные движения, такие как использование качелей, контролируемое вращение, прыжки на батуте, упражнения на балансировочных досках и движения на фитболе. Для детей с гиперчувствительностью вестибулярной системы критически важны медленные, ритмичные, предсказуемые и линейные виды активности, например плавное покачивание или работа в устойчивых позах. Систематическое применение этих активностей нормализует мышечный тонус, улучшает координацию, пространственную ориентацию, схему тела, внимание и эмоциональную саморегуляцию [9, с. 105].

Стимуляция проприоцептивной системы является еще одним мощным регуляторным инструментом. Основные методы включают так называемую «тяжелую работу» — толкание или перенос предметов, ползание с сопротивлением, сжимание эспандеров, использование утяжеленных жилетов или одеял, жевательные аксессуары — а также техники глубокого давления, такие как создание «бу-

терброда» подушками, прокатывание массажными мячами или обертывание в тяжелое одеяло. Эти воздействия успокаивают нервную систему, повышают осознанность тела, улучшают моторный контроль, снижают тревожность и организуют поведение. Применение этих методов требует строгой индивидуализации и дозировки нагрузки [10, с. 8].

Сенсорная интеграция представляет собой фундаментальный подход, позволяющий дефектологу выявить первопричины поведенческих и развивающих трудностей ребенка. Грамотное

применение ее приемов стабилизирует состояние, снижая тревожность и улучшая саморегуляцию и внимание, развивает моторные навыки и координацию, создает основу для речи и когнитивных функций, повышая тем самым комфорт и эффективность коррекции. Владение принципами и методами сенсорной интеграции является неотъемлемым компонентом профессиональной квалификации современного дефектолога, стремящегося максимально раскрыть потенциал ребенка, преодолевая сенсорные барьеры.

Литература

- 1. Садовская Ю.Е., Блохин Б.М., Троицкая Н.Б., Проничева Ю.Б. Нарушения сенсорной обработки у детей // Лечебное дело. 2010. № 4. URL: https://cyberleninka.ru/article/n/narusheniya-sensornoy-obrabotki-u-detey (дата обращения: 08.08.2025).
- 2. Балюкова И.Б. Сенсорная интеграция как направление психолого-педагогического сопровождения детей с нарушениями речи [Электронный ресурс] // Мир науки. Педагогика и психология. 2023. Т. 11. № 1. URL: https://mir-nauki.com/PDF/39PSMN123.pdf (дата обращения: 08.08.2025).
 - 3. Лурия А.Р. Ощущения и восприятие. М.: Просвещение, 1975. 192 с.
- 4. Ахутина Т.В., Пылаева Н.М. Преодоление трудностей обучения: нейропсихологический подход. СПб. : Питер, 2008. 160 с.
- 5. Варенова Т.В. Коррекция развития детей с особыми образовательными потребностями: учеб.-метод. пособие. М.: Форум, 2017. 270 с.
- 6. Варенова Т.В. Метод сенсорной интеграции в профилактике специфических расстройств школьных навыков // Образование лиц с особенностями психофизического развития: традиции и инновации: материалы Междунар. науч.-практ. конф., Минск, 25–26 окт. 2018 г. / Бел. гос. пед. ун-т им. М. Танка; редкол.: В.В. Хитрюк [и др.]. Минск: БГПУ, 2018. С. 35–38.
- 7. Мамина Т.М., Карпинская В.Ю., Шилов Ю.Е. Принципы сенсомоторной интеграции в развитии детей: обзор теоретических подходов // Психология XXI века: актуальные вызовы и достижения: сб. ст. участников междунар. науч. конф. молодых ученых. СПб. : Скифия-принт, 2020. С. 144–155.
- 8. Кислинг У. Сенсорная интеграция в диалоге: понять ребенка, распознать проблему, помочь обрести равновесие / пер. с нем. К.А. Шарр; под ред. Е.В. Клочковой. М.: Теревинф, 2010. 240 с.
- 9. Андриевская О.А. Особенности психокоррекционной работы с детьми с задержкой психоречевого развития // Воспитание и обучение детей младшего возраста: сб. материалов ежегод. междунар. на-уч.-практ. конф. 2018. С. 105-106.
- 10. Сакаева А.Н., Боброва В.В., Сагадиева Т.К. Использование приемов сенсорной интеграции в коррекционной работе с детьми с РАС [Электронный ресурс] // Педагогикалык ылым жэне практика = Педагогическая наука и практика. 2022. № 2 (36). URL: https://cyberleninka.ru/article/n/ispolzovanie-priemovsensornoy-integratsii-v-korrektsionnoy-rabote-s-detmi-s-ras (дата обращения: 08.08.2025).

Теоретические аспекты формирования имиджа образовательной организации

Казакова Ксения Алексеевна

Московский городской педагогический университет, Москва Магистрант E-mail: kazakovaka@mgpu.ru

Аннотация: в статье рассматривается теоретическая база формирования положительного имиджа современной общеобразовательной школы как ключевого фактора ее конкурентоспособности. Анализируется структура имиджа образовательной организации, выделяются его основные компоненты: внутренний, внешний и цифровой. Исследуется взаимосвязь между корпоративной культурой, качеством предоставляемых образовательных программ и репутацией учреждения. Особое внимание уделяется специфике конкурентной среды, где ключевыми потребителями выступают родители и учащиеся. На основе теоретического анализа делается вывод о необходимости системного и стратегического подхода к управлению имиджем школы для обеспечения ее устойчивого развития и привлекательности.

Ключевые слова: образовательная организация, позитивный имидж, конкурентоспособность, внутренний имидж, внешний имидж, цифровой имидж, корпоративная культура.

овременная система образования в России ⊿характеризуется возрастающей конкуренцией между организациями. Если ранее конкуренция ассоциировалась чаще всего с вузами, то сегодня она активно проявляется и на уровне общего образования [1, с. 148]. Родители, как главные «заказчики» образования, получают возможность выбора школы, что трансформирует образовательные организации в субъектов рынка, вынужденных бороться за контингент и репутацию. В этих условиях целенаправленное формирование положительного имиджа становится не просто элементом маркетинга, а стратегической необходимостью, обеспечивающей выживание и развитие школы [1, с. 150]. Цель данной статьи — систематизировать теоретические подходы к формированию имиджа

образовательной организации в применении к контексту современной общеобразовательной школы.

В теоретической литературе имидж организации определяется как целостное, эмоционально окрашенное представление о ней, складывающееся в сознании целевых аудиторий [2, с. 326]. Применительно к школе, ее имидж — это совокупность убеждений, ощущений и впечатлений родителей, учащихся, педагогов и широкой общественности о качестве образования, атмосфере и престиже данного учреждения.

Под имиджем в широком понимании принято рассматривать совокупность уникальных черт и характеристик, которые служат инструментом для создания в сознании аудитории конкретного восприятия того или иного объекта. В педагоги-

ческом дискурсе имидж выполняет схожую роль, что и в политологии или социологии — он становится механизмом конструирования общественного мнения. В рамках педагогических изысканий данный феномен анализируется преимущественно через призму эффективного взаимодействия между учителем и учениками.

Как отмечает К. Атаманская, интеграция феномена имиджа в педагогическую науку обусловлена рядом причин. По мнению исследователя, ключевым фактором выступает «это вызвано стремлением государства к формированию положительного имиджа власти, а, следовательно, для этого используется образование как мощный канал формирования определенных имиджевых установок» [3, с. 84]

К. Атаманская также указывает, что растущее внимание педагогики к вопросам имиджа связано с усилением роли государственного регулирования в образовательной сфере и актуальностью задачи повышения социального статуса учителя.

С точки зрения психолого-педагогического подхода, имидж общеобразовательного учреждения интерпретируется как эмоционально насыщенный образ, укорененный в массовом сознании. Его формирование происходит за счет передачи отличительных черт и результатов деятельности школы, а также определяется соответствием между ценностными ориентирами организации и ожиданиями общества. Этот образ проецируется в социальное пространство и определяет конкурентные позиции учреждения. Таким образом, имидж можно охарактеризовать как коллективное представление об образовательной организации, складывающееся либо на основе прямого контакта с ней, либо под влиянием полученной извне информации.

Теоретики и практики (Е.А. Блажнов, И.Б. Романова, М.В. Томилова) сходятся во мнении, что имидж школы является многокомпонентным образованием. В его структуре можно выделить три ключевых блока:

Внутренний имидж — это восприятие школы ее непосредственными участниками: администрацией, педагогами и учениками. Он формируется корпоративной культурой, психологическим климатом в коллективе, системой мотивации сотрудников, уровнем их удовлетворенности трудом и профессиональным развитием [4, с. 149]. Как справедливо отмечают М.В. Виноградова и Л.Г.

Почебут, именно внутренний имидж является фундаментом для внешнего: «счастливый» и мотивированный педагог транслирует позитивное отношение к школе вовне, что напрямую влияет на качество обучения и атмосферу.

Внешний имидж — это образ школы в сознании внешних аудиторий: родителей (нынешних и потенциальных), жителей микрорайона, органов управления образованием, потенциальных партнеров. Он складывается из:

- Качества образовательных программ: академических результатов учащихся (ЕГЭ, олимпиады), разнообразия учебных программ и кружков;
- Репутации педагогического коллектива: наличия педагогов-экспертов, победителей профессиональных конкурсов;
- Материально-технической базы: оснащенности классов и уровень внутренней инфраструктуры школы;
- Внешней атрибутики: фирменного стиля, эмблемы, гимна, формы учащихся;
- Истории и традиций: сложившихся ритуалов, праздников, историй успеха выпускников [5, с. 182].

Цифровой (онлайн) имидж — в современной реальности становится неотъемлемой частью общего имиджа. Для школы это ее представленность в цифровом пространстве: официальный сайт, страницы в социальных сетях, отзывы на онлайн площадках. Цифровой имидж становится первым, с чем сталкивается потенциальный потребитель, что делает его управление и ведение критически важным.

Конкурентоспособность школы в среде образовательных организаций — это ее способность предоставлять образовательные программы, в большей степени соответствующие запросам потребителей (родителей и детей), чем других школ [6, с. 122].

Положительный имидж напрямую влияет на конкурентоспособность через несколько механизмов:

1. Привлечение и удержание контингента: школа с сильным положительным имиджем становится «школой выбора», в которую стремятся попасть, что обеспечивает стабильный набор в первые классы и предотвращает отток учащихся в другие учреждения;

- 2. Привлечение квалифицированных кадров: позитивный имидж делает школу привлекательным работодателем для талантливых и амбициозных педагогов;
- 3. Укрепление ресурсной базы: высокий статус облегчает привлечение дополнительной спонсорской помощи, установление выгодных партнерских связей с вузами и предприятиями;
- 4. Повышение лояльности сообщества: формируется сообщество лояльных выпускников и родителей, которые становятся представителя имиджа школы, добровольно продвигая ее положительный образ [7, с. 776].

Теоретический анализ позволяет заключить, что формирование имиджа современной школы — это сложный, многокомпонентный и непре-

рывный процесс, требующий системного подхода и стратегического планирования. Он не сводится к разовым PR-акциям, а должен быть интегрирован в общую систему управления учреждением.

Успешный имидж основывается на триаде: прочный внутренний имидж (благоприятный климат и сильная команда), подкрепленный реальным качеством образовательных программ и транслируемый вовне через эффективные коммуникации (включая цифровые). Такой комплексный подход позволяет школе не просто адаптироваться к условиям конкуренции, а активно формировать положительный имидж и конкурировать в своем сегменте, обеспечивая устойчивое развитие и выполнение своей главной миссии — качественного образования и воспитания подрастающего поколения.

Литература

- 1. Панкрухин, А.П. Маркетинг образовательных услуг. М.: Омега-Л, 2021. С. 148-150.
- 2. Назаренко А.В., Зоткина В.С. Проблемы формирования имиджа образовательного учреждения // Человек, Общество и Государство в Современном Мире. 2016. С. 325–329.
- 3. Атаманская К.И. Компетентностный компонент профессионального имиджа социального педагога // Гуманитарные исследования. 2021. № 1. С. 82- 84.
- 4. Виноградова, М.В., Почебут, Л.Г. Взаимосвязь корпоративной культуры и имиджа образовательной организации // Вестник Санкт-Петербургского университета. Менеджмент. 2022. Т. 21, № 1. С. 149–164.
- 5. Наумова Н.Б. Создание имиджа учебного заведения (школы) // Развитие личности как стратегия современной системы образования. 2016. С. 180–184.
- 6. Жданкина Ирина Юрьевна, Шамин Евгений Анатольевич Сущность и понятие конкурентоспособности образовательных организаций // Вестник НГИЭИ. 2014. №9 (40). С. 122–128.
- 7. Пискунов М.С. Имидж образовательного учреждения: структура и механизмы формирования // Стандарты и мониторинг в образовании. 1999. №5. С. 45–55.
- 8. Иванов В.Г. Конкурентоспособность образовательной организации как результат конкурентоспособности. Профессиональное образование в современном мире. 2017. Т. 7. № 1. С. 776–782.
- 9. Яковлева Т. Н. Имидж школы глазами субъектов образовательного процесса // Universum: психология и образование. 2015. № 9 -10(19). С.2.
- 10. Федеральный закон от 29.12.2012 N 273-ФЗ (ред. от 03.08.2018) «Об образовании в Российской Федерации» // Справочно-правовая система «КонсультантПлюс».

Научные высказывания

Сетевой научный журнал открытого доступа 2025 ● № 13(81)

Издается с сентября 2021 г.

Выходит два раза в месяц.

ISSN: 2782-3121

Выпускающий редактор А.Ю. Крупский

Ответственные редакторы: Е.В. Семин, Л.Л. Обручникова

Подготовка оригинал-макета и обложки: А. Кривошеина, А. Москаленко

Журнал «Научные высказывания» является журналом открытого доступа, предполагающего предоставление автором результатов научных исследований в виде полнотекстовой научной статьи для публикации в целях неограниченного и безвозмездного ознакомления с ней в сети Интернет неограниченного круга лиц, которые, используя ссылку на труд ученого, продолжают научные исследования для глобального обмена знаниями.

Свидетельство о регистрации СМИ: серия Эл № ФС77–79727 от 07 декабря 2020 г., выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций.

УЧРЕДИТЕЛЬ И ИЗДАТЕЛЬ ЖУРНАЛА

Издательство: Индивидуальный предприниматель Румянцев Антон Алексеевич

ОГРН: 320774600381920; ИНН: 772374161057 Учредитель: Румянцев Антон Алексеевич

РЕДАКЦИЯ

Главный редактор: Румянцева Екатерина Александровна

Адрес редакции: 111675, г. Москва, ул. Дмитриевского, дом 7, помещение 7

Caйm: https://nvjournal.ru/

Адрес электронной почты: info@nvjournal.ru

Телефон: +7 (495) 128-72-82

